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Social	networks	provide	access	to	resources.

Any	process	that	shapes	network	formation	
will	have	implications	for	inequality.



DiMaggio	and	Garip	(2011,	AJS)	argue	that:

Homophily (tendency	for	actors	to	associate	with	similar	others)

leads	to	segregated	networks,	and	

to	inter-group	inequality	in	outcomes	for	which	alters	offer	a	positive	influence.



DiMaggio	and	Garip	(2011)	ask:

What	explains	the	racial	gap	in	Internet	adoption	in	the	United	States?
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Initial	differences:	The	educated,	rich,	and	whites	adopt	first

Homophily:	Networks	are	clustered	by	education,	income,	and	race		

Network	externalities:	Technology	becomes	more	valuable	the	more	
people	in	one’s	network	adopt	it
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social	networks	lead	to	surplus	inequality	



DiMaggio	and	Garip	(2011)	use:

an	agent-based	model



DiMaggio	and	Garip	(2011)	use:

an	agent-based	model

with	agents	sampled	from	the	General	Social	Survey
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Consolidation: the	correlation	between	
characteristics	in	a	population

Blau and	Schwartz	(1984)
Crosscutting	Social	Circles



Low	homophily and	low	consolidation	ensure	
cross-cutting	social	ties	and	social	cohesion

Blau and	Schwartz	(1984)	argued:
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linked	to	higher	rates	of
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Agent-based	model	of	
network	formation	and	
diffusion
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Insight	#1:	
Homophily and	
consolidation	interact.
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When	the	diffusion	process	is	simple
(i.e.,	you	need	1 adopter	in	your	
network	to	adopt	a	practice),	then	low	
consolidation	and	low	homophily lead	
to	successful	diffusion.
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Social	cohesion	º
Diffusion	of	a	norm

When	the	diffusion	process	is	simple
(i.e.,	you	need	1 adopter	in	your	
network	to	adopt	a	practice),	then	low	
consolidation	and	low	homophily lead	
to	successful	diffusion.

When	the	diffusion	process	is	complex	
(that	is,	you	need	³ 2	adopters	in	your	
network	to	adopt	a	practice),	then	
medium	consolidation	and	medium	
homophily lead	to	successful	diffusion.
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Insight	#2:	
Homophily and	
consolidation	have	non-
linear	effects	on	diffusion.
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What	does	this	all	mean	for	inequality?
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Zhao	and	Garip Agent-based	model	
with	status	differences	among	agents	
where	status	affects	adoption	probability

We	track	adoption	levels	for	different	
status	groups

Homophily and	consolidation	are	
key	parameters



Algorithm

1. Set	the	level	of	homophily and	consolidation



G=6

G individuals	in	group

Watts,	Dodds &	Newman	(2002)
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Algorithm

1. Set	the	level	of	homophily and	consolidation

2. Assign	individuals	to	groups	in	each	social	dimension	based	on	consolidation

3. Form	network	ties	between	individuals	based	on	homophily

4. Set	the	initial	seed	for	diffusion	(a	random	high-status	individual	and	their	network)

5. Run	the	model	until	diffusion	reaches	equilibrium

Innovation:	One	dimension	indicates	`status’
There	are	three	status	groups:	high,	medium	and	low
Adoption	threshold	is	an	inverse	function	of	status



Zhao	and	Garip	with																			
status-based	adoption	threshold

Centola with
fixed	adoption	threshold

Overall	diffusion
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DiMaggio	and	Garip	with	
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DiMaggio	and	Garip	with	
fixed	consolidation

Zhao	and	Garip	with
low	consolidation
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When	diffusion	process	is	complex
networks	with	overlapping	ties	are	ideal
which	occur	at	middling	levels	of	homophily and	consolidation

Homophily and	consolidation	can	help	diffusion
and	as	a	result	can	reduce	inequality

What	is	the	underlying	intuition?

High	homophily

Odds	ratios	under	
low	consolidation



Can	we	use	these	insights	in	the	real	world?



Migration	is	a	social	diffusion	process



Past	migration	is	a	catalyst	for	future	mobility	
(aka cumulative	causation	of	migration)

Migration	is	a	social	diffusion	process
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There	is	variation	(‘inequality’)	in	the	
diffusion	of	migration

Example:	Migration	started	in	the	central-
western	states	in	Mexico	– those	connected	to	
the	United	States	via	railroads	in	1900s.	But	
those	states	are	not	the	highest-migration	
states	now.	
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Does	the	structure	of	social	ties	explain	the	
variation	in	the	diffusion	of	migration?
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200	randomly-selected	households	in	each	community



Data
Mexican	Migration	Project	
161	communities	surveyed	between	1982	and	2016
200	randomly-selected	households	in	each	community

Sample
19,708	life	histories	available	from	household	heads	and	spouses
>1	million	person-years	from	1965	to	2016
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Measures
Induced	homophily =	homogeneity
complement	of	mean	of	all	pairwise	social	distances	

Consolidation
mean	pairwise	correlation	among	six	dimensions

Migration	prevalence
Percentage	of	individuals	who	have	ever	migrated	in	a	community-year
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Middling	levels	of	
homogeneity	and	
consolidation	@	
community	level

Highest	effect	of	
community	migration	
prevalence	on	individual	
migration

Hypotheses



Models
Logit	model	of	whether	an	individual	
makes	a	U.S.	trip	in	a	year

Introduce	linear	and	quadratic	terms	for	
homogeneity	and	consolidation

Include	interactions	
homogeneity	x	consolidation	x	prevalence



Predicted	migration	probability	under	varying	
degrees	of	homogeneity	and	consolidation	
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Models
Categorize	communities	into	3	x	3	groups	
by	homogeneity	(H)	and	consolidation	(C)

Compute	the	Gini	within	each	group

Regress	the	Gini	on	9	H	x	C	group	and	year	
dummies



Under	high	consolidation,	homogeneity	
does	not	increase	between-community	
variance.

Results

>
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Results
Low	consolidation

High	homogeneity Low	homogeneity

Under	low	consolidation,	homogeneity	
reduces	between-community	variance.

variance

<



Can	we	use	this	theory	to	explain	our	
original	puzzle?
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Take-away

Consolidation	is	key	to	network	formation	and	diffusion

Homophily can	help	diffusion	and	alleviate	inequality

These	parameters	can	be	measured	with	socio-demographic	
data	and	used	as	a	proxy	for	network	structure


